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Abstract
The discovery of activating BRAF mutations in ~50% of all melanomas has proved to be a turning
point in the therapeutic management of the disseminated disease. In this commentary we review
the latest research delineating the role of mutant BRAF in melanoma initiation and progression and
discuss the remarkable 10-year journey leading up to the recent FDA-approval of the small
molecule BRAF inhibitor vemurafenib. We further outline the most recent findings on the
mechanisms that underlie intrinsic and acquired BRAF inhibitor resistance and describe ongoing
preclinical and clinical studies designed to delay or abrogate the onset of therapeutic escape. It is
hoped that our evolving understanding of melanoma genetics and intracellular signaling coupled
with a growing armamentarium of signal transduction inhibitors will lead to significant
improvements in the level and durability of therapeutic response in metastatic melanoma.
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Introduction
Disseminated melanoma has a dismal prognosis and is almost completely resistant to
therapeutic modalities such as chemotherapy and radiotherapy. The 2002 discovery of
activating mutations in the serine/threonine kinase BRAF (v-raf murine sarcoma viral
oncogene homolog B1) in approximately 50% of all melanomas kick-started a targeted
therapy “arms race” which in under 10 years led to the FDA-approval of the BRAF inhibitor
vemurafenib1,2. Together, these studies have set a new benchmark for the rapid development
of genome-specific anti-cancer agents. In this commentary we will review the latest
developments in our understanding of the role of BRAF signaling in melanoma pathogenesis
and will discuss the preclinical and clinical development of small molecule inhibitors of the
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BRAF/MEK/ERK signaling pathway. We will further outline the challenges that remain in
the effective clinical translation of BRAF/MEK/ERK inhibitors with a particular emphasis
upon emerging strategies for the management of BRAF inhibitor resistance in the clinic.

The biology of mutated BRAF and the role of the MEK/ERK signaling pathway in
melanoma development and progression

BRAF is a member of the Raf family of serine threonine kinases (ARAF, BRAF and
CRAF), which are part of the Ras/Raf/MEK/ERK mitogen activated protein kinase (MAPK)
signal transduction cascade. The MAPK pathway is a key mediator of growth signaling that
links cell surface growth factor receptors (such a receptor tyrosine kinases; RTKs) to the
increased transcription of genes required for cell cycle entry. Although mutations in BRAF
have been described at a number of sites (see3 for a comprehensive list), the majority, which
account for >80%, result in the substitution of valine to glutamic acid (the BRAF V600E
mutation)1,4. Acquisition of the V600E mutation destabilizes the inactive conformation of
the BRAF kinase shifting the equilibrium to the active state5. Of the other BRAF mutations
identified in melanoma, V600K, V600D/R are also common and represent 16% and 3% of
all BRAF mutations, respectively6. In addition to melanoma, BRAF mutations are also
common in many other cancers including papillary thyroid carcinoma, ovarian carcinoma
and colorectal carcinoma7.

Despite the well established role of BRAF mutations in cancer, equivalent activating
mutations in either ARAF or CRAF are extremely rare7. The reasons behind this are still
subject to debate but seem to be a consequence of the relative ease of BRAF activation (with
only Ras-mediated membrane recruitment required) compared to the more complex process
of ARAF and CRAF activation (which involves a number of priming phosphorylation events
at multiple sites by Src and other as yet unidentified kinases7).

V600E-mutated BRAF is a bona fide melanoma oncogene, with its introduction leading to
the malignant transformation of immortalized human melanocytes both in vitro and in vivo8.
In transgenic mouse models the conditional, melanocyte-specific expression of BRAF
V600E leads to spontaneous melanoma formation, but only in conjunction with the
inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN)9. This,
together with data showing that introduction of mutant BRAF alone into primary human
melanocytes leads to senescence, suggests that although mutated BRAF may be an initiating
factor in melanomagenesis, other co-operating events are also required10.

Although BRAF mutations are not ultraviolet (UV) radiation signature mutations, they have
a tendency to occur on UV-exposed skin sites and are more prevalent in individuals with a
poor tanning response11. There is also evidence that intermittent, rather than chronic sun-
exposure is predictive for BRAF mutational status with BRAF mutant melanoma patients
tending to be younger in age (<55 years old) with a lower cumulative UV exposure12. BRAF
mutational status is also of prognostic value and is associated with inferior survival in the
metastatic setting (8.5 months in BRAF wild-type vs 5.7 months for BRAF mutant
melanoma)13.

Much of the transforming activity of mutant BRAF is mediated through activation of the
RAF/MEK/ERK pathway1. Signaling through the MAPK pathway drives the growth of
melanoma cells through the upregulation of cyclin D1 expression and by downregulating the
cell cycle inhibitor p27KIP1. It also serves to increase melanoma cell survival by regulating
the expression and function of a number of pro and anti-apoptotic proteins, such as BIM,
BMF, BAD and Mcl-114–17 (Figure 1). Inhibition of BRAF or MEK signaling using either
small molecule inhibitors or siRNA knockdown increases the expression of the pro-
apoptotic BH3-only protein BIM which induces apoptosis by binding to and antagonizing
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the activity of the pro-survival proteins Bcl-2, Bcl-w, Bcl-XL and Mcl-118,19. BIM is known
to exist as three spliceforms BIM-EL (extra long), BIM-L (long), and BIM-S (short), with
BIM-S being the most cytotoxic isoform19. The BRAF/MEK/ERK pathway regulates BIM
expression through phosphorylation at Ser69, leading to its proteasomal degradation and by
differentially regulating BIM splicing18,20. Survival of melanoma cells is also controlled in
part by the anti-apoptotic protein, Mcl-1, whose stability can also be regulated through the
BRAF/MEK/ERK pathway15 (Figure 1). A number of recent studies have further suggested
a role for increased BMF (Bcl-2 modifying factor) expression in mediating the apoptotic
response of melanoma cells treated with inhibitors of BRAF and MEK14,21.

Constitutive activity in the BRAF/MEK/ERK pathway in melanoma drives the invasive and
motile behavior of melanoma cells through the re-organization of the cytoskeleton, the
activation of the cells' migratory machinery and the upregulation of matrix metalloproteinase
expression22,23. Mechanistically, mutated BRAF downregulates the expression of the cyclic
GMP phosphodiesterase PDE5A, which facilitates melanoma cell invasion by increasing
intracellular levels of cGMP, leading to the release of cytosolic calcium and the
phosphorylation of myosin light chain 224. Mutant BRAF also increased motility through
direct effects upon the cytoskeleton. In this instance, BRAF signaling directly regulates the
expression of RND3/RhoE/Rho8, a protein that mediates the crosstalk between the RAF/
MEK/ERK and Rho/Rock/LIMK/Cofilin pathways25,26. Depletion of RND3 using either
siRNA or following BRAF/MEK inhibition led to an increase in focal adhesion stability and
an inhibition of melanoma cell invasion in 3D cell culture models25.

There is also evidence that oncogenic BRAF regulates the interaction of melanoma cells with
the host microenvironment, particularly cells of the immune system. Inhibition of BRAF or
MEK signaling in melanoma cells upregulates the expression of highly immunogenic
differentiation antigens, leading to enhanced T-cell recognition27–29. The apparent ability of
BRAF/MEK inhibitors to enhance the immune cell recognition of melanoma may offer a
rationale for the future combination of BRAF inhibitors with immunotherapies such as
ipilimumab30.

The preclinical development of BRAF, MEK and ERK inhibitors in melanoma
At the time of the initial discovery of activating BRAF mutations in melanoma, selective
BRAF kinase inhibitors had not been developed. One drug that was available at the time was
the multi-kinase inhibitor sorafenib (Nexxavar ®)31. Although this was primarily a CRAF
inhibitor, it did have some activity against mutant BRAF and was enthusiastically embraced
as the first BRAF specific agent. Despite some activity in cell culture and the ability to
stabilize disease in human melanoma xenograft models, sorafenib was ultimately found to
have little activity in human melanoma patients, even when selected for their BRAF
mutational status32,33.

The latest generation of BRAF inhibitors offers a significant improvement over sorafenib in
terms of potency against mutant BRAF and far fewer off-target effects. Compounds that
have been evaluated preclinically include AZ628, XL281, GDC-0879, SB590885,
GSK2118436 (GSK2118436) and vemurafenib (PLX4032, and its analogue PLX4720)34–38

(Figure 2). Of these, vemurafenib and GSK2118436 have been the most extensively studied
both preclinically and clinically. Vemurafenib is an ATP-competitive RAF inhibitor (WT
BRAF IC50, 100nM; mutant BRAF IC50, 31 nM; CRAF IC50, 48 nM) that selectively
inhibits the phospho-ERK expression and growth of melanoma cell lines harboring BRAF
V600E and V600K mutations35,39. In cell line models, vemurafenib induced both a G1-
phase cell cycle arrest and an apoptotic response that was well correlated with increased
BIM expression as well as the regression of established human BRAF V600E mutant
melanoma xenografts40,41.
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One unexpected finding was that small molecule BRAF inhibitors activated MAPK
signaling pathway in melanoma cells that were BRAF wild-type42–45. In vitro, the
paradoxical activation of MAPK signaling arose in BRAF wild-type cell lines that harbored
either an oncogenic Ras mutation or had upstream constitutive RTK activity (such as in
HER2)42,44,46. The paradoxical activation of Raf that occurred following BRAF inhibition
was found to increase proliferation and also enhanced the invasion of the melanoma cells
through increased FAK activity as well as increasing the survival of NRAS mutated
melanoma cell lines by increasing Mcl-1 expression45. Nearly all BRAF inhibitors evaluated
to date, including sorafenib, vemurafenib, GSK2118436 and XL281 have been associated
with the development of proliferative skin lesions most frequently identified as squamous
cell carcinomas of the keratoacanthoma (KA) type36,47,48. These lesions, although rapidly
growing, can be managed through surgical excision and do not recur. There is growing
evidence that KAs arise as a result of the paradoxical activation of MAPK signaling
following BRAF inhibition. Sequencing of a large cohort of KAs from patients that had
spontaneous KAs, were immunosuppresed or were undergoing RAF inhibitor therapy
demonstrated a significant enrichment for Ras mutations (21% vs 3%) in those individuals
undergoing RAF inhibitor therapy49,50. These and other observations have prompted the
development of a new generation of BRAF inhibitors, so-called “paradox breakers” (typified
by PLX-Pb4) that apparently prevent the paradoxical activation of MAPK signaling.
Although published data is currently lacking on these new drugs, it is hoped that their
improved selectivity profile may prevent the development of KA and delay the time to
resistance.

MEK and ERK inhibitors—A large body of preclinical work has demonstrated that
virtually all melanomas have high constitutive activity in the MAPK pathway. The reasons
for this are numerous, and can include activating BRAF and NRAS mutations, autocrine
stimulation of growth factor receptors, such as c-MET and FGFR151, activation through
avβ3 integrin binding52, and increased Notch1 signaling53. Most early studies of MEK
inhibition in melanoma preceded the discovery of BRAF mutations and instead focused upon
the role of MAPK in suppressing differentiation (an observation that is now proving critical
for the development of BRAF/immunotherapy combinations)54–56.

Preclinical studies have shown that inhibition of MEK in melanoma cells using inhibitors
such as PD98059, PD0325901, CI-1040 and AZD6244 leads to a profound G1 phase cell
cycle arrest57–59 (Figure 2). These cytostatic effects are associated with the inhibition of
cyclin D1 expression, increased p27KIP1 expression and hypophosphorylation of the
retinoblastoma protein57,59. In some sensitive BRAF mutant melanoma cell lines, MEK
inhibition also induces apoptosis60. In general, the inhibition of MEK alone was not found to
induce high levels of apoptosis and anti-tumor effects were enhanced following the dual
inhibition of MEK and PI3K or by combining MEK inhibitors with chemotherapy drugs,
such as paclitaxel58,61 (Figure 2).

Another class of drugs targeting the MAPK pathway currently under development are the
ERK inhibitors, AEZS-131 (Æterna Zentaris) and SCH772984 (Merck/Schering Plough).
Although little published data is currently available on these compounds they seem
pharmacologically distinct from MEK inhibitors and they may be of some future utility in
overcoming vemurafenib resistance.

Clinical development of BRAF and MEK inhibitors
The first RAF inhibitor to be developed clinically in melanoma was the pan-kinase inhibitor
sorafenib31. In early clinical trials, single agent sorafenib showed little efficacy and was
associated with a median progression-free survival (PFS) of 3 months and only 1 response
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out of 39 melanoma patients treated62. On the basis of phase II trials, where hints of
sorafenib response were seen in combination with chemotherapy, large-scale phase III trials
of sorafenib in combination with chemotherapy were initiated. The randomized studies
showed variable results with low response rates and did not provide evidence that the
clinical effects of sorafenib were mediated through RAF inhibition33. It now seems likely
that any sorafenib activity observed in melanoma patients was independent of its effects
upon BRAF and may instead have been a reflection of its off-target inhibitory effects on
kinases such as VEGFR32,63. It is worth noting that the putative anti-angiogenic effects of
sorafenib are the likely basis of the drug's efficacy in renal cell carcinoma64.

The clinical failure of sorafenib led some to question whether oncogenic BRAF was really a
good therapeutic target in melanoma. These concerns were quickly dispelled by the
development of vemurafenib, a more potent and selective BRAF inhibitor, with fewer off-
target effects than sorafenib35. In the phase I clinical trial, approximately 80% of BRAF
V600E mutated melanoma patients treated at the recommended phase II dose of
vemurafenib (960 mg, PO BID) responded to therapy. In all cases, responses were
associated with inhibition of intratumoral phospho-ERK, reduction of Ki67 positivity by
immunohistochemistry and the inhibition of glucose uptake as measured by FDG-PET65. An
update of the phase I data, presented at the 2011 Society of Melanoma Research meeting,
demonstrated the 1-year survival to be ~50% and the 2-year survival to be 38%, with a
median overall survival of 13.8 months66.

The phase II trial of vemurafenib (960mg BID) (BRaf In Melanoma: BRIM-2) enrolled 132
patients who had progressed on other therapies. In this cohort, there were 3 complete
responses, 66 confirmed partial responses, and 39 patients with stable disease. Median OS
has yet to be met and the medial PFS for this refractory population was 6.8 months67. The
pivotal phase III trial (BRIM-3) randomized 675 untreated metastatic melanoma patients to
either vemurafenib (960mg PO BID) or dacarbazine (the “standard of care” for metastatic
melanoma). The study was terminated early in December 2010 because of a clear overall
survival benefit seen to vemurafenib, with a hazard ration of 0.44 favoring vemurafenib over
dacarbazine48. The overall response rate for vemurafenib was 48% and median PFS of 5.3
months as compared to 5% response rate and median PFS of 1.6 months for dacarbazine48.
At six months, the Kaplan-Meier estimate of overall survival was 83% and 63% for
vemurafenib and dacarbazine respectively. Correlative studies showed that a >90%
reduction in intratumoral phospho-ERK was required for a clinical response to be seen68.
Based upon the phase II trial data, vemurafenib was FDA-approved for unresectable
metastatic BRAF mutant melanoma in late 2011.

BRAF V600E/K mutant melanoma patients treated with the BRAF inhibitor GSK2118436
showed similarly impressive responses36. A single-arm phase II study (BREAK-2) (n=92:
76 V600E mutant: 16 V600K mutant) showed objective response rates in the V600E cohort
of 59% (95% CI 48–70%) with responses seen in 2 V600K patients. Median progression
free survival was 27 and 20 weeks, respectively in the two mutation subsets. At this time
GSK2118436 is currently undergoing phase III evaluation.

MEK inhibition—The identification of BRAF and NRAS mutations in significant numbers
of melanoma patients and the observation that nearly all melanomas showed constitutive
MAPK activity, led to the development of small molecule MEK inhibitors, such as
PD0325901, selumetinib (AZD6244) and CI-1040 in unselected groups of melanoma
patients69–71 (Figure 2). The early studies on PD0325901 showed limited evidence of
activity, with 2 out of 27 patients having partial responses and a further 5 patients having
stable disease. In the phase I trial of AZD6244 one BRAF mutant melanoma patient was
noted to have a complete response to AZD6244 persisting beyond 15 months72. However, a
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subsequent large phase II trial of AZD6244 vs temozolomide in an unselected melanoma
patient population showed no difference in PFS73. Overall these initial studies were
disappointing and it was not clear whether these drugs were able to reliably inhibit the
MAPK pathway at the doses used. The use of MEK inhibitors was further limited by
diarrhea and visual disturbance with serious retinal vein thrombosis being reported in small
numbers of patients.

Interest in the clinical development of MEK inhibitors in BRAF mutant melanoma was
renewed by the development of GSK112012, an allosteric MEK inhibitor that potently
inhibits MAPK signaling at clinically achievable doses74,75. At this time, GSK1120212
represents the most extensively studied MEK inhibitor in BRAF mutant melanoma and
appears to have the best single agent activity of any MEK inhibitor evaluated thus far. In the
phase II trial of 57 BRAF mutant melanoma patients previously treated with chemotherapy
or immunotherapy, there were 2 complete responses, 17 partial responses, and 27 patients
with stable disease, indicating an objective response rate of 33% and a disease control rate
of 81%76. In the BRAF inhibitor naïve cohort, updated data showed the median duration of
response to be 5.7 months, with a median PFS of 4 months76. Similar levels of response
were seen in V600E or V600K mutated patients; however, there was minimal activity seen
in the cohort of patients previously treated with a BRAF inhibitor. GSK1120212 is currently
being evaluated in a Phase III trial (NCT01245062). It is worth noting that although
GSK21120212 represents the best activity in its class, single-agent BRAF inhibition appears
to show greater clinical efficacy.

Strategies to manage BRAF inhibitor resistance
Despite the impressive levels of tumor shrinkage observed in BRAF mutant melanoma
patients treated with small molecule BRAF inhibitors, responses are typically short-lived
(PFS: ~ 7 months) with resistance occurring in nearly every case48,77. The observation that
~50% of BRAF mutant melanoma patients on vemurafenib therapy did not meet the RECIST
criteria for a response further suggests the existence of intrinsic BRAF inhibitor resistance48.
Intrinsic resistance has been well documented in preclinical studies, with BRAF V600E
mutant melanoma cell lines showing a wide range of IC50 values to vemurafenib and other
BRAF inhibitors38,78–80. Although the reasons behind this are not yet clear, melanomas are
known to harbor complex patterns of mutations and genomic amplifications, with alterations
being reported in (among other things), MITF, AKT3, COT, cyclin D1, CDK2, CDK4 and
the retinoblastoma protein79,81–85. How these multiple factors interact to convey intrinsic
resistance to BRAF inhibitors is currently the focus of intense investigation.

Intrinsic resistance to targeted therapy agents, such as trastuzumab in breast cancer, often
results from increased basal levels of AKT signaling associated with the loss of PTEN
expression/function86. In this instance, inhibition of EGFR is associated with impaired
apoptosis and an overall worse response86. Emerging evidence suggests that impaired PTEN
function may also, in part, mediate intrinsic vemurafenib resistance in melanoma80,87

(Figure 3). This has been shown to result from increased AKT signaling when BRAF is
inhibited, which limits the nuclear accumulation of FOXO3a, leading to a decrease in BIM-
mediated apoptosis87 (Figure 1). A recent clinical analysis of patients receiving the BRAF
inhibitor GSK2118436 support these preclinical studies and show that BRAF mutant
melanoma patients with a concurrent PTEN dysfunction exhibit lower response rates than
BRAF mutant melanoma patients that retain PTEN function88. Similar findings were also
reported in BRAF mutant melanoma cell lines treated with the MEK inhibitor AZD6244,
where increased IGF-I mediated AKT signaling limited the apoptotic response60. In both of
these cases, the IGF-I-mediated effects upon AKT signaling and intrinsic apoptosis
resistance were overcome following treatment with a MEK + an AKT or mTORC1/2
inhibitor or a BRAF inhibitor + an AKT inhibitor60,87 (Figure 3).
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Inhibition of BRAF signaling in melanoma cell lines leads to the attenuation of MEK/ERK
signaling, the inhibition of cyclin D1 expression and a G1-phase cell cycle arrest38. Work
from our group identified a sub-set of BRAF mutant melanoma cell lines and tumor
specimens with genomic amplification of cyclin D179. Melanoma cell lines with cyclin D1
amplification in concert with a BRAF mutation showed intrinsic resistance to BRAF
inhibition and continued to enter the cell cycle when oncogenic BRAF was inhibited79.
Deregulation of the G1 cell cycle checkpoint, as a result of mutational inactivation of the
retinoblastoma protein (RB1), in conjunction with PTEN loss (found in 2/19 of BRAF
V600E melanoma cell lines) also conveyed intrinsic resistance to inhibitors of BRAF and
MEK80 (Figure 3).

Other recent studies identified protein kinase D3 (PRKD3) as being a potential mediator of
intrinsic resistance to the RAF inhibitors RAF265 and vemurafenib89 (Figure 3). In this
instance, the siRNA knockdown of PRKD3 reduced the IC50 of both RAF265 and
vemurafenib in multiple melanoma cell lines and prevented the reactivation of MAPK
signaling following drug treatment89. In BRAF V600E mutant cell lines lacking PTEN
expression, PRKD3 activity further contributed to resistance through the reactivation of
PI3K/AKT signaling following RAF inhibition89.

Acquired resistance to BRAF inhibitors occurs in the majority of patients treated90.
Experimental studies suggest that minor populations of BRAF V600E-mutant melanoma
cells exhibit drug tolerance and survive the initial treatment, with full resistance typically
emerging after 3–6 months38,91,92. Unlike the resistance reported to other targeted therapies
such as EGFR inhibitors in non-small cell lung cancer and imatinib resistance in
gastrointestinal stromal tumors (GIST) and chronic myeloid leukemia (CML), resistance to
BRAF inhibition is not associated with the acquisition of secondary (so called “gate-
keeper”) mutations in the kinase that prevent drug binding93–95. Although in vitro studies
identified threonine-529 as the gate-keeper residue site in BRAF, a large scale sequencing
analysis of the gene at exon 13 (where Thr-529 lies) did not identify this mutation in
specimens from melanoma patients failing vemurafenib therapy96,97. Instead, preclinical
studies where BRAF inhibitor resistance was generated in vitro showed that acquired
resistance was mediated through a diverse array of mechanisms including constitutive
signaling in receptor tyrosine kinases (IGF1R and PDGFR-β), increased expression of the
MAP kinase family member COT (MAP3K8, TPL-2), acquisition of mutations in NRAS and
MEK1 and as the result of a BRAF truncations37,83,97–100 (Figure 3). These observations
support earlier pre-clinical studies showing that exogenously added growth factors and
cytokines were able to rescue melanoma cells from cell death following siRNA-induced
knockdown of BRAF101,102. The relative importance and frequency of each of these
proposed resistance mechanisms in melanoma patients failing therapy are not currently clear
and still require extensive clinical validation.

Although a number of potential vemurafenib resistance mechanisms have been reported,
nearly all rely upon a common set of signaling pathways. Preclinical studies have already
shown that reactivation of MAPK signaling is commonly associated with vemurafenib
resistance and that combined MEK + BRAF inhibition is effective at abrogating the
resistance mediated by MEK1 mutations, COT overexpression, BRAF truncation and
acquired Ras mutations38,83,99,100. In contrast, resistance mediated through increased IGF1R
signaling appears to be overcome by dual MEK + PI3K inhibition and resistance mediated
through increased PDGFR-β signaling can be reversed through the targeting of the mTOR/
PI3K/AKT pathway98,103.
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Clinical evaluation of BRAF inhibitor based combinations
The hypothesis that the recovery of MEK/ERK signaling underlies some of the resistance to
BRAF inhibitors is currently being clinically validated in a phase I/II trial of the
GlaxoSmithKline BRAF inhibitor GSK2118436 in combination with the MEK inhibitor
GSK1120212 (NCT01072175) as well as a trial of vemurafenib in combination with MEK
inhibitor GDC-0973 (NCT01271803). Early indications suggest these combinations may be
effective, with the recent data presented at ASCO showing the GSK2118436 +
GSK1120212 combination to be associated with an objective response rate of 77% (150mg
GSK2118436, 1mg GSK1120212). Of interest, the combination was found to significantly
reduce the incidence of keratoacanthoma (<1%, n=109), validating the role of rebound
BRAF inhibitor mediated MEK/ERK signaling in the development of these tumors74.

The phase I/II expansion cohort of the GSK2118436/GSK1120212 combination is also
being evaluated in BRAF mutant melanoma patients who progressed on a prior BRAF
inhibitor. In this study, 26 patients with metastatic melanoma who progressed on either
GSK2118436 or vemurafenib alone were enrolled. Six of the patients had also previously
received a MEK inhibitor. The median time since discontinuing prior BRAF inhibitor
therapy was 1.1 months. The objective response rate was 19% but 62% of patients had some
degree of tumor regression. The median progression-free survival was 3.6 months. Though
most responses were short-lived, a subset of PR and SD patients (n=7) were still on therapy
beyond 30 weeks104. In contrast, single agent GSK112012 had little efficacy in patients who
progressed on prior BRAF inhibitor therapy66.

Based upon preclinical observations demonstrating the dual requirement for the BRAF/
MEK and PI3K/AKT signaling pathways in melanoma progression, and the likely role of
enhanced PI3K signaling in BRAF inhibitor resistance, clinical trials have been initiated to
examine the PI3K/mTOR inhibitor BEZ235 in combination with the MEK inhibitor
MEK162 (NCT01337765)9,61,91,98,105. This trial is currently enrolling patients who are
BRAF mutant and those who are NRAS mutant.

The suggestion that BRAF targeted agents may enhance the effects of immunotherapy led to
the initiation of a phase I/II clinical trial to evaluate the efficacy of vemurafenib in
combination with the anti-CTLA-4 antibody ipilimumab (NCT01400451).

Future perspectives
The recent years have seen incredible progress in our management of advanced melanoma.
If progress continues as we expect, a future can be envisaged in which rationally designed
BRAF inhibitor-based drug combinations may be able to significantly extend the life span of
BRAF-mutant melanoma patients. The possible development of successful BRAF inhibitor/
immune therapy based combinations offers the real possibility that very durable responses
could be achieved. Although significant challenges remain as to the identification of good
response biomarkers and strategies to overcome acquired drug resistance these remain
exciting times for the melanoma community.
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Figure 1. BRAF V600E regulation of pro-apoptotic proteins promotes cell survival
Inhibition of BRAF prevents proteasomal degradation of FOXO3a and BIM by blocking
MEK/ERK mediated phosphorylation of FOXO3a at Ser294, Ser344 and Ser425 as well as
phosphorylation of BIM at Ser69. However, in some melanomas with constitutive PI3K/
AKT activity, increased AKT signaling leads to phosphorylation and nuclear exclusion of
FOXO3a resulting in decreased expression of BIM. Both the MAPK pathway and AKT
pathways can also regulate the activity of BAD through direct phosphorylation.
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Figure 2.
Targeted kinase inhibitors of the MAPK and PI3K/AKT/mTOR pathways. Several
compounds such as AZ628, dabrafenib, GDC-0879, SB90885 and XL281 are being
evaluated for clinical use with vemurafenib being the only currently FDA approved BRAF
inhibitor. Compounds that target the MAPK cascade such as the MEK inhibitor
GSK1120212 and the ERK inhibitor SCH772984 as well as PI3K, AKT and mTOR
inhibitors are also being developed as single and combined agents for the treatment of
BRAF mutant melanomas.
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Figure 3. Known mechanisms of BRAF inhibitor resistance
Multiple acquired (shown in green) and intrinsic (shown in pink) mechanisms of BRAF
inhibitor resistance have been identified. Chronic BRAF inhibition can lead to activation of
the MAPK pathway through acquisition of secondary NRAS Q61K mutations, RAF isoform
(ARAF>BRAF>CRAF) signal switching, truncation of BRAF to a BRAF inhibitor
refractory form, MEK1 C121S mutation as well as increased COT expression which has
been linked to intrinsic as well as acquired resistance. RTK signaling via IGF1R and
PDGFRb can also activate the MAPK and the PI3K/AKT pathways. Intrinsic mechanisms of
resistance have been associated with amplification of cyclin D1 or RB1 inactivation
allowing cells to continue through the cell cycle. Loss of PTEN and genetic alterations in
PIK3CA and AKT3 are associated with de novo resistance by increasing PI3K/AKT activity
while PRKD3 activation can increase both MAPK and PI3K/AKT signaling.
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